Membrane mechanisms for electrogenic Na(+)-independent L-alanine transport in the lizard duodenal mucosa.

نویسندگان

  • M Díaz
  • V Medina
  • T Gómez
  • A Lorenzo
چکیده

The active Na(+)-independent transport of L-alanine across the duodenal mucosa of the lizard Gallotia galloti was studied in Ussing-type chambers using a computer-controlled voltage clamp. Addition of L-alanine to the Na(+)-free bathing solutions resulted in a significant L-alanine absorption (J(net)) that was paralleled by an increase in transepithelial short-circuit current (I(sc)) and potential difference (PD) without apparent changes in the tissue conductance. The concentration dependence of J(net), PD, and I(sc) displayed Michaelis-Menten kinetics. L-alanine-induced electrical changes were completely inhibited by external alkaline pH or by the H(+)-ionophore carbonyl cyanide m-chlorophenyl-hydrazone in the bathing solution. The alanine-induced electrogenicity was dependent on the presence of extracellular K(+) and could be blocked by serosal Ba(2+) or mucosal orthovanadate. These results suggest the existence of an H(+)-coupled L-alanine cotransport at the apical membrane of enterocytes. The favorable H(+) driving force is likely to be maintained by an apical vanadate-sensitive H(+)-K(+)-ATPase, allowing the extrusion of H(+) in an exchange with K(+). Potassium exit through a basolateral barium-sensitive conductance provides the key step for the electrogenicity of L-alanine absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrogenic Na(+)-dependent L-alanine transport in the lizard duodenum. Involvement of systems A and ASC.

L-Alanine transport across the isolated duodenal mucosa of the lizard Gallotia galloti has been studied in Ussing chambers under short-circuit conditions. Net L-alanine fluxes, transepithelial potential difference (PD), and short-circuit current (Isc) showed concentration-dependent relationships. Na(+)-dependent L-alanine transport was substantially inhibited by the analog alpha-methyl aminoiso...

متن کامل

Regulation of L-alanine transport systems A and ASC by cyclic AMP and calcium in a reptilian duodenal model.

The regulation of neutral amino acid transport by cyclic AMP (cAMP) and calcium across the isolated duodenum of the lizard Gallotia galloti has been studied under short-circuit conditions. Active L-alanine transport was stimulated by forskolin, theophylline and dibutyryl cyclic AMP (db-cAMP). All these agents increased transmural potential difference (PD) and short-circuit current (I(sc)) in a ...

متن کامل

Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.

Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into th...

متن کامل

Renal transport of neutral amino acids. Cation-dependent uptake of L-alanine by luminal-membrane vesicles.

The characteristics of L-alanine transport in luminal-membrane vesicles isolated either from whole cortex or from pars convoluta or pars recta of rabbit proximal tubules were studied by a rapid filtration technique and by a spectrophotometric method. Uptake of L-alanine by vesicles from whole cortex was mediated by both Na+-dependent and Na+-independent, but electrogenic, processes. The nature,...

متن کامل

Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.

The transport of L-alanine was studied using membrane vesicles derived from the brush borders of the rabbit renal proximal tubule. Preincubation of the renal membranes with L-alanine, but not D-alanine, accelerated exchange diffusion of L-alanine, i.e. stereospecific counter transport. The equilibrium uptake of L-alanine decreased with increasing medium osmolarity. Extrapolation to infinite med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000